Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.889
Filtrar
1.
Chem Rec ; 24(4): e202400010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501833

RESUMO

Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.


Assuntos
Nanocompostos , Neoplasias , Humanos , Hidróxidos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico , Nanocompostos/química
2.
Chemosphere ; 353: 141647, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460843

RESUMO

Humification offers a promising avenue for sequestering dissolved organic carbon while facilitating environmental cleanup. In this study, CuMgFe layered double oxides (LDO) were applied as a catalyst to replace conventional enzymes, such as laccase, thereby enhancing the in vitro polyphenol-Maillard humification reaction. CuMgFe LDO was synthesized through calcination of CuMgFe layered double hydroxides (LDH) at 500 °C for 5 h. A suite of characterization methods confirmed the successful formation into mixed oxides (Cu2O, CuO, MgO, FeO, and Fe2O3) after thermal treatment. A rapid humification reaction was observed with CuMgFe LDO, occurring within a two-week span, likely due to a distinct synergy between copper and iron elements. Subsequent analyses identified that MgO in CuMgFe LDO also played a pivotal role in humification by stabilizing the pH of the reaction. In the absence of magnesium, LDO's humification activity was more pronounced in the early stages of the reaction, but it rapidly diminished as the reaction progressed. The efficiency of CuMgFe LDO was heightened at elevated temperatures (35 °C), while light conditions manifested a discernible effect, with a modest decrease in humification efficacy under indoor light exposure. CuMgFe LDO surpassed both laccase and MgFe LDH in performance, boasting a superior humification efficiency relative to its precursor, CuMgFe LDH. The catalysts' humification activity was modulated by their crystallinity and valence dynamics. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results suggested that introducing the amino acid, glycine, expedited the CuMgFe LDO-fueled humification, enhancing the formation of C-N and C-C bonds in the resultant products. The humic-like substances derived from the catalyst-enhanced reaction displayed an elevated presence of aromatic configurations and a richer array of oxygen functional groups in comparison to a typical commercial humic material.


Assuntos
Lacase , Óxidos , Óxidos/química , Óxido de Magnésio , Substâncias Húmicas/análise , Hidróxidos/química
3.
Nanotechnology ; 35(27)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38537263

RESUMO

An efficient and robust electrocatalyst is significant for glucose biosensing. The emergence of metal-organic framework (MOF) derived materials opens up new avenues for the development of high-performance glucose sensing catalysts. Herein, MOF derived nickel-cobalt hydroxide supported on conductive copper sheet (NiCo-OH/Cu sheet) is prepared at room temperature. The as-obtained NiCo-OH is endowed with three-dimensional network structure which enables the effective exposure of active materials, sufficient contact between glucose molecule and catalyst. The NiCo-OH/Cu sheet is revealed as good glucose electrochemical sensing material with a wide linear range of 0.05∼6.0 mM and a high sensitivity of 1340µA mM-1cm-2. Additionally, the as-fabricated NiCo-OH/Cu sheet displays good anti-interference ability and long-term stability.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Glucose/química , Estruturas Metalorgânicas/química , Cobre/química , Técnicas Biossensoriais/métodos , Hidróxidos/química , Níquel/química
4.
Environ Pollut ; 348: 123865, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548162

RESUMO

Singlet oxygen (1O2) is a reactive species for the selective degradation of stubborn organic pollutants. Given its resistance to harsh water environment, the effective and exclusive generation of 1O2 is acknowledged as a key strategy to mitigate water production costs and ensure water supply safety. Herein, we synthesized MnOx intercalated MnFe layered double hydroxides (MF-MnOx) to selectively produce 1O2 through the activation of PMS. The distinctive confined structure endowed MF-MnOx with a special pathway for the PMS activation. The direct oxidation of BPA on the intercalated MnOx induced the charge imbalance in the MnFe-LDH layer, resulting in the selective generation of 1O2. Moreover, acceptable activity deterioration of MF-MnOx was observed in a 10 h continuous degradation test in actual water, substantiating the application potential of MF-MnOx. This work presents a novel catalyst for the selective production of 1O2, and evaluates its prospects in the remediation of micro-polluted water.


Assuntos
Peróxidos , Oxigênio Singlete , Oxigênio Singlete/química , Peróxidos/química , Hidróxidos/química , Água , Oxigênio
5.
Sci Rep ; 14(1): 3990, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368467

RESUMO

Fluoxetine (FLX) is one of the most persistent pharmaceuticals found in wastewater due to increased use of antidepressant drugs in recent decades. In this study, a nanocomposite of ternary ZnCoAl layered double hydroxide supported on activated carbon (LAC) was used as an adsorbent for FLX in wastewater effluents. The nanocomposite was characterized using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis (BET). The adsorption investigations showed that the maximum removal capacity was achieved at pH 10, with a 0.1 g/L adsorbent dose, 50 mL volume of solution, and at a temperature of 25 °C. The FLX adsorption process followed the Langmuir-Freundlich model with a maximum adsorption capacity of 450.92 mg/g at FLX concentration of 50 µg/mL. Density functional theory (DFT) computations were used to study the adsorption mechanism of FLX and its protonated species. The safety and toxicity of the nanocomposite formed from the adsorption of FLX onto LAC (FLX-LAC) was investigated in male albino rats. Acute toxicity was evaluated using probit analysis after 2, 6, and 24 h to determine LD50 and LD100 values in a rat model. The FLX-LAC (20 mg/kg) significantly increased and lengthened the sleep time of the rats, which is important, especially with commonly used antidepressants, compared to the pure standard FLX (7 mg/kg), regular thiopental sodium medicine (30 mg/kg), and LAC alone (9 mg/kg). This study demonstrated the safety and longer sleeping duration in insomniac patients after single-dose therapy with FLX-LAC. Selective serotonin reuptake inhibitors (SSRIs) like FLX were found to have decreased side effects and were considered the first-line mood disorder therapies.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Humanos , Masculino , Animais , Ratos , Fluoxetina , Águas Residuárias , Hidróxidos/química , Antidepressivos , Nanocompostos/química , Adsorção , Cinética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
6.
Environ Sci Pollut Res Int ; 31(15): 22630-22644, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413523

RESUMO

Groundwater environments are complex, and traditional advanced oxidation technologies mainly based on free radicals have limitations such as poor selectivity and low interference resistance, making it difficult to efficiently degrade target pollutants in groundwater. Therefore, we developed a sludge-based biochar-supported FeMg-layered double hydroxide catalyst (BC@FeMg-LDH) for the catalytic degradation of 2, 4-dichlorophenol (2, 4-DCP) using persulfate (PDS) as an oxidant. The removal efficiency of the catalyst exceeded 95%, showing high oxidation activity in a wide pH range while being almost unaffected by reducing substances and ions in the environment. Meanwhile, under neutral conditions, the leaching of metal ions from BC@FeMg-LDH was minimal, thereby eliminating the risk of secondary pollution. According to quenching experiments and electron paramagnetic resonance spectroscopy, the main active species during BC@FeMg-LDH/PDS degradation of 2, 4-DCP is 1O2, indicating a non-radical reaction mechanism dominated by 1O2. Characterization techniques, including X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, revealed that the carbonyl (C = O) and metal hydroxyl (M-OH) groups on the material surface were the main reactive sites mediating 1O2 generation. The 1O2 generation mechanism during the reaction involved ketone-like activation of carbonyl groups on the biochar surface and complexation of hydroxyl groups on the material surface with PDS, resulting in the formation of O2·- and further generation of 1O2. 1O2 exhibited high selectivity toward electron-rich organic compounds such as 2, 4-DCP and demonstrated strong interference resistance in complex groundwater environments. Therefore, BC@FeMg-LDH holds promising applications for the remediation of organic-contaminated groundwater.


Assuntos
Água Subterrânea , Hidróxidos , Hidróxidos/química , Carvão Vegetal/química , Metais , Fenóis
7.
Int J Biol Macromol ; 262(Pt 2): 129986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360231

RESUMO

Until now, many efficient catalysts have been reported that are used for the reduction of nitroarenes. However, a catalyst reusability is a challenge that is often faced in practical environment. In this report, we designed a hydrogel composite (CMC-LDH), which act as support and making it possible to address this challenge. In this research work, zinc/aluminum based layered double hydroxides (Zn/Al LDH) have been assembled with carboxymethyl cellulose (CMC) to prepare CMC/LDH hydrogel beads. The CMC/LDH hydrogel beads were prepared by the ionotropic gelation method. For CMC/LDH/Au preparation, the already prepared CMC/LDH beads were kept in gold ion (Au3+) solution, and their subsequent reduction with sodium borohydride (NaBH4). For the characterization of the prepared samples different instrumental techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and scanning electron microscopy (SEM) were adopted. For the catalytic evaluation of CMC/LDH/Au, it was utilized as a catalyst in 4-NP and 4-NA reduction reactions. The continuity of the reaction was monitored by a UV-visible spectrophotometer. Rate constant (kapp) of 0.48474 min-1 and 0.7486 min-1 were obtained for 4-NP and 4-NA reduction, respectively. The hydrogel beads were recycled and reused for up to five successive cycles without significantly changing their catalytic efficiency.


Assuntos
Carboximetilcelulose Sódica , Nanopartículas Metálicas , Compostos de Zinco , Carboximetilcelulose Sódica/química , Ouro , Nanopartículas Metálicas/química , Hidrogéis/química , Zinco , Compostos Orgânicos , Hidróxidos/química
8.
Chemosphere ; 346: 140551, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303398

RESUMO

The synthesis and characterization of graphitic carbon nitride (GCN) and its composites with calcined layered double hydroxide (CLDH) were examined in this investigation. The goal was to assess these composites' maximum adsorption capacity (qmax) for U(VI) ions in wastewater. Several different characterization methodologies were utilized to examine the fabricated substances. These methods encompass X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The GCN-CLDH composite displayed enhanced adsorption ability towards U(VI) ions due to its high surface functionality. Langmuir adsorption isotherm analysis showed that more than 99% of U(VI) ions were adsorbed, with a qmax of 196.69 mg/g. The kinetics data exhibited a good fit for a pseudo-second-order (PSO) model. Adsorption mechanisms involving precipitation and surface complexation via Lewis's acid-base interactions were proposed. The application of the GCN-CLDH composite in groundwater demonstrated adsorption below the maximum permissible limit established by USEPA, indicating improved cycling stability. These observations underscore the capacity of the GCN-CLDH composite's proficiency in adsorbing U(VI) aqueous solutions containing radioactive metals.


Assuntos
Grafite , Compostos de Nitrogênio , Poluentes Químicos da Água , Água , Espectroscopia de Infravermelho com Transformada de Fourier , Hidróxidos/química , Adsorção , Cinética , Poluentes Químicos da Água/análise
9.
Nanoscale ; 16(10): 5383-5394, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38375749

RESUMO

Antifungal resistance has become a very serious concern, and Candida albicans is considered one of the most opportunistic fungal pathogens responsible for several human infections. In this context, the use of new antifungal agents such as zinc-based layered double hydroxides to fight such fungal pathogens is considered one possible means to help limit the problem of antifungal resistance. In this study, we show that ZnAl LDH nanoparticles exhibit remarkable antifungal properties against C. albicans and cause serious cell wall damage, as revealed by growth tests and atomic force microscopy (AFM) imaging. To further link the antifungal activity of ZnAl LDHs to their adhesive behaviors toward C. albicans cells, AFM-based single-cell spectroscopy and single-particle force spectroscopy were used to probe the nanoscale adhesive interactions. The force spectroscopy analysis revealed that antimicrobial ZnAl LDHs exhibit specific surface interactions with C. albicans cells, demonstrating remarkable force magnitudes and adhesion frequencies in comparison with non-antifungal negative controls, e.g., Al-coated substrates and MgAl LDHs, which showed limited interactions with C. albicans cells. Force signatures suggest that such adhesive interactions may be attributed to the presence of agglutinin-like sequence (Als) adhesive proteins at the cell wall surface of C. albicans cells. Our findings propose the presence of a strong correlation between the antifungal effect provided by ZnAl LDHs and their nanoscale adhesive interactions with C. albicans cells at both the single-cell and single-particle levels. Therefore, ZnAl LDHs could interact with C. albicans fungal pathogens by specific adhesive interactions through which they adhere to fungal cells, leading to their damage and subsequent growth inhibition.


Assuntos
Antifúngicos , Candida albicans , Compostos de Zinco , Humanos , Antifúngicos/farmacologia , Hidróxidos/farmacologia , Hidróxidos/química , Zinco/farmacologia , Zinco/química , Análise Espectral
10.
Chemosphere ; 352: 141399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331263

RESUMO

Layered double hydroxides (LDHs) have been recognized to have great potential for the treatment of heavy metals in wastewater and soil through various mechanisms. Isomorphic substitution is an important mechanism for the sorption of heavy metal cations with LDH reconstruction and highly stable product formation. However, sorption performance, structure-related relationships, and, more importantly, stability are still poorly understood. In this study, a series of LDHs with different structures were synthesized to evaluate their cadmium (Cd) sorption performance and stability concerning the isomorphic substitution mechanism. Divalent cation types in the LDH lattice determined the Cd sorption capacity as well as the isomorphic substitution possibility, following the order of hydroxide solubility of divalent cations (MII): Ca2+>Mg2+>(Cd2+) > Ni2+>Zn2+. In addition, CaAl-LDH exhibited a super-high Cd sorption capacity of 625.0 mg g-1. Cd sorption by LDHs with different interlayer anion types and divalent/trivalent cation molar ratios varied due to crystallite size-related MII release through cation-exchange/isomorphic substitution. Coexisting cations (e.g., Zn2+, Ni2+, Mg2+) influence the sorption performance of MII-LDH mainly through isomorphic substitution mechanism, largely depending on the solubility of MII(OH)2 with a trend of stable product formation. Furthermore, Mg2.9Cd0.1AlCl-LDH was fabricated, and limited Cd dissolution without destruction of the LDH structure was observed under various conditions. For example, only 7.69%, 2.16% and 0.96% of Cd was released from as-prepared Mg2.9Cd0.1AlCl-LDH in NaCl solution (0.02 mol L-1, pH 5), soil extract, and soil matrix, respectively. The very low leaching of Cd from Cd-containing LDHs indicated the high stability of LDH-sorbed Cd via isomorphic substitution and feasible practical application in Cd sequestration in wastewater treatment and soil remediation.


Assuntos
Cádmio , Metais Pesados , Cátions Bivalentes , Cátions , Hidróxidos/química , Solo
11.
Chem Biol Interact ; 391: 110874, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311162

RESUMO

Layered double hydroxides (LDHs) have been employed as nano-sized carriers for therapeutic/bio-active molecules, including small interfering RNAs (siRNAs). However, the potential of LDHs nanoparticles for an efficient and safe antisense oligonucleotide (AMO) delivery still requires studies. In this research, we have tested the suitability of a Mg-Al-LDH-based nanocarrier loaded with a miRNA-196b-5p inhibitor. LDHs (and LDH-Oligo complex) were synthesized by the coprecipitation method followed by physicochemical characterization as hydrodynamic size, surface charge, crystallinity, and chemical groups. Thymic endothelial cell line (tEnd.1) were transfected with LDH-Oligo and were evaluated for i. cell viability by MTT, trypan blue, and propidium iodide assays; ii. transfection efficiency by flow cytometry, and iii. depletion of miRNA-196b-5p by RT-qPCR. In addition, Drosophila melanogaster larvae were fed LDHs and evaluated for: i. larval motility; ii. pupation rate; iii. larval-pupal transition; iv. lethality, and v. emergence rate. We demonstrated that LDHs nanoparticles are stable in aqueous solutions and exhibit a regular hexagonal shape. The LDH-AMO complex showed a transfection efficiency of 93.95 ± 2.15 % and induced a significant depletion of miRNA-196b-5p 48h after transfection. No cytotoxic effects were detected in tEnd.1 cells at concentrations up to 50 µg/ml, as well as in Drosophila exposed up to 500 µg of LDH. In conclusion, our data suggest that LDHs are biocompatible and efficient carriers for miRNA inhibitors and can be used as a viable and effective tool in functional miRNA inhibition assays.


Assuntos
Antineoplásicos , MicroRNAs , Animais , MicroRNAs/genética , Drosophila melanogaster , Hidróxidos/química , Água , RNA Interferente Pequeno
12.
Environ Sci Pollut Res Int ; 31(11): 17426-17447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337120

RESUMO

In this study, a new nanocomposite of hydroxyapatite (HA)/Mg-Al layered double hydroxide (LDH) was successfully formed via a facile co-precipitation method and applied to adsorb three anionic dyes of alizarin red S (ARS), Congo red (CR), and reactive red 120 (RR120) differing in the number of SO3- groups from aqueous solution. Based on a combination of characterization analysis and adsorption experiments, HA/Mg-Al LDH nanocomposite showed better adsorption performance than HA and Mg-Al LDH. Using XRD and TEM analyses, the crystallinity and the presence of nanoparticles were confirmed. According to the SEM investigation, the Mg-Al LDH layers in the nanocomposite structure were delaminated, while HA nanorods were formed at the surface of Mg-Al LDH nanoparticles. The higher BET surface area of the novel HA/Mg-Al LDH nanocomposite compared to HA and Mg-Al LDH provided its superior adsorption performance. Considering an effective amount of adsorbent dosage, pH 5 was selected as the optimum pH for each of the three dye solutions. According to the results from the study of contact time and initial concentration, the pseudo-second-order kinetic (R2 = 0.9987, 0.9951, and 0.9922) and Langmuir isotherm (R2 = 0.9873, 0.9956, and 0.9727) best fitted the data for ARS, CR, and RR120, respectively. Anionic dyes with different numbers of SO3- groups demonstrated distinct adsorption mechanisms for HA and Mg-Al LDH nanoparticles, indicating that the adsorption capacity is influenced by the number of SO3- groups, with HA/Mg-Al LDH nanocomposite offering superior performance toward dyes with higher numbers of SO3- groups. Furthermore, ΔH° less than 40 kJ/mol, positive ΔS°, and negative ΔG° accompanied by the mechanism clarifying show physical spontaneous adsorption without an external source of energy and increase the randomness of the process during the adsorption, respectively. Finally, the regeneration study demonstrated that the nanocomposite could be utilized for multiple adsorption-desorption cycles, proposing the HA/Mg-Al LDH as an economically and environmentally friendly adsorbent in the adsorption of anionic dyes in water treatment processes.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Corantes/química , Adsorção , Hidróxidos/química , Vermelho Congo/análise , Nanocompostos/química , Hidroxiapatitas , Cinética , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 31(9): 12748-12779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265587

RESUMO

The textile industry is responsible for producing large volumes of wastewater that contain a wide variety of dye compounds. This poses a significant environmental hazard and risks harming both ecosystems and living organisms. This review study explores the advancements in adsorption research for dye removal, with a particular emphasis on the development of various adsorbents. The article provides detailed insights into the toxicity and classification of dyes, different treatment techniques, and the characteristics of numerous adsorbents, with special attention to layered double hydroxides (LDH) and clay minerals. A comprehensive list of adsorbents, encompassing natural materials, agricultural by-products, industrial waste, and activated carbon, is discussed for effective removal of different dyes. Furthermore, the review extensively examines the influence of various adsorption variables, such as pH, initial dye concentration, adsorbent dosage, temperature, contact time, ionic strength, and pore volume of the adsorbent. Additionally, the application of response surface methodology for optimizing adsorption variables is elucidated. Commonly, electrostatic attraction, π-π interactions, n-π interactions, van der Waals forces, H-bonding, and pore diffusion play a major role in adsorption mechanism. The review also found that LDH can eliminate a wide range of dyes from wastewater, achieving excellent uptake capacities often exceeding 500 mg/g, with a removal efficiency of 99%. The Langmuir isotherm and pseudo-second-order kinetic equations gave the best fit to most of the adsorption data. Overall, this review serves as a valuable resource for researchers and practitioners seeking sustainable solutions to address the environmental challenges posed by textile dye contamination.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Argila , Ecossistema , Hidróxidos/química , Corantes/química , Minerais , Têxteis , Adsorção , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
14.
Chemosphere ; 351: 141207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266877

RESUMO

In this study, a vitamin C-regulated CoAl-layered double hydroxide with abundant oxygen vacancies was synthesized via a simple hydrothermal process. The resulting CoAl-layered double hydroxide was employed to activate peroxydisulfate for removal of sulfamethoxazole. The effect of the experimental parameters such as pH, catalyst dose and peroxydisulfate concentration on sulfamethoxazole removal was investigated. The current system exhibited excellent catalytic performance for sulfamethoxazole removal in a broad pH range (i.e., pH 3.0-11.0). Under the optimized condition, 94.2% of sulfamethoxazole was degraded within 15 min, accompanied by a 67.6% reduction in chemical oxygen demand. The effective sulfamethoxazole degradation could be attributed to four pathways. Firstly, the ≡ Co2+ in catalyst reacted with peroxydisulfate to generate reactive species, including SO4•-, •OH, O2•- and 1O2, which could degrade sulfamethoxazole. Secondly, the oxygen vacancies could modulate intrinsic electrons, resulted in the surface activation of catalyst and accelerated charge transfer, which was favorable for the degradation of sulfamethoxazole. Thirdly, the presence of vitamin C not only promoted the formation of oxygen vacancies but also expanded the interlayer spacing of layered double hydroxide. A large interlayer spacing facilitated the diffusion of peroxydisulfate and pollutants in the interlayer and improved the utilization efficiency of the active site. Lastly, the high-valent cobalt species exhibited excellent oxidation ability and enhanced the catalyst performance through continuously being employed as an electron acceptor. This study provided a valuable insight for the design and application of Co-based catalysts in peroxydisulfate-based advanced oxidation processes.


Assuntos
Oxigênio , Sulfametoxazol , Sulfametoxazol/química , Oxigênio/química , Cobalto/química , Ácido Ascórbico , Carvão Mineral , Hidróxidos/química , Vitaminas
15.
Int J Biol Macromol ; 260(Pt 1): 129335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228211

RESUMO

Organic-inorganic hybrid materials with high oxygen- and UV-barrier properties were developed using a polyelectrolyte complex comprising sodium alginate (SA), poly (vinyl alcohol) (PVA), and reconstructed layered double hydroxide (RLDH). These materials were applied to poly (ethylene terephthalate) (PET) as a barrier coating layer at a harsh drying temperature of 120 °C, similar to environments for the industrial coating process. The RLDH nanoplatelets within the coating matrix restricted the polymer chain mobility, elevating the glass transition temperature to 105.222-159.114 °C. Below RLDH 0.2 %, the apparent coating density significantly increased to 0.93-0.94 g/cm3. The embedded RLDH gave a tortuosity within the matrix, as evidenced by an intensified (003) diffraction peak in the XRD analysis. These structural alterations contributed to high oxygen- and UV-barrier performance. Notably, the PET/SA1.0PVA0.5RLDH0.2 film exhibited an extremely low oxygen transmission rate of <0.005 cm3/m2·day, with effectively blocking UV-A (62.41 %), -B (92.45 %), and -C light (100 %). Moreover, the susceptibility of the coated film to water vapor was mitigated by laminating cast polypropylene, achieving a water vapor transmission rate of 1.17 g/m2·day. Overall, the packaging materials with advanced oxygen-, water vapor-, and UV-barrier properties show great potential for practical applications in various sectors, including food packaging and medical/electrical devices.


Assuntos
Alginatos , Oxigênio , Polieletrólitos , Oxigênio/química , Vapor , Polietilenotereftalatos , Etanol , Hidróxidos/química
16.
Int J Biol Macromol ; 260(Pt 2): 129556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244732

RESUMO

Effective loading and delivering the wound healing-based materials to the wound site and area with an optimum concentration and limited cytotoxicity are essential for a complete and fast healing process. Here, we have designed Zn/Al-LDH nanoparticles-loaded CMC films for encapsulation and delivery of gallic acid (GA) in order to develop an effective and efficient wound-healing scaffold. The physicochemical properties of the prepared Zn/Al-LDH nanohybrids were thoroughly characterized by several characterization techniques, such as FESEM, Hi-TEM, FTIR, and XRD techniques. The thermal properties of the scaffolds were evaluated by DSC and TGA analysis. The release profiles of GA from fabricated films were studied over 8 h by UV-vis spectroscopy. In vitro drug release studies in PBS solutions with pH 7.4 showed a mono-phasic profile in which the liberation of the drug mainly occurred by scaffold erosion and increased by increasing the experiment period. The in vitro antibacterial activity of Zn/Al-LDH-GA-loaded CMC films was assessed by disk diffusion and cell viability contact tests. The results showed the desired antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria. Incorporating GA within CMC and CMC-Zn/Al-LDH films rereleased good cytocompatibility at the studied incubation time and different concentrations toward human normal HFF cell line than the free drug. The results of the present study indicated that the Zn/Al-LDH and Zn/Al-LDH-GA-loaded CMC have promising wound healing features to further develop a better future for clinical remedy of the different non-healing and hard-to-heal wounds.


Assuntos
Nanocompostos , Compostos de Zinco , Zinco , Humanos , Zinco/farmacologia , Carboximetilcelulose Sódica/química , Alumínio/farmacologia , Hidróxido de Alumínio , Antibacterianos/farmacologia , Antibacterianos/química , Hidróxidos/química , Nanocompostos/química , Cicatrização
17.
Int J Biol Macromol ; 256(Pt 1): 128385, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000576

RESUMO

The development of multifunctional magnetic nanocomposites as a drug delivery system for cancer therapy is highly desirable in current nanomedicine. Herein, folic acid-bovine serum albumin conjugate (FA-BSA) was modified on nanocomposites by combining quantum-sized Fe3O4 and layered double hydroxide (LDH) to obtain a novel FA-BSA/Fe3O4@LDH for the delivery of the anticancer drug 5-Fluorouracil (5-Fu). The prepared nanocomposites showed good dispersibility, colloidal stability, magnetic property and erythrocyte compatibility. FA-BSA/Fe3O4@LDH/5-Fu showed pH responsiveness, with both the amount and duration of release of FA-BSA/Fe3O4@LDH/5-Fu being significantly higher in pH 5.0 release medium than in pH 7.4 release medium. The cellular experiments implied that no significant cytotoxicity of FA-BSA/Fe3O4@LDH, particularly due to the presence of FA-BSA, which further enhanced the biocompatibility of the nanocomposite. Furthermore, FA-BSA/Fe3O4@LDH/5-Fu could specifically target the 2D HepG2 cells model and 3D hepatoma cell microspheres model in vitro, and efficient internalization through folate receptor-mediated endocytosis, showing excellent anti-cancer cell activity in a concentration-dependent manner. Therefore, the constructed FA-BSA/Fe3O4@LDH was able to provide a potential novel multifunctional nanocomposite for magnetic-targeting drug delivery and pH-responsive release of drugs to enhance the efficiency of cancer therapy.


Assuntos
Ácido Fólico , Nanocompostos , Ácido Fólico/química , Soroalbumina Bovina/química , Sistemas de Liberação de Medicamentos , Fluoruracila/farmacologia , Fenômenos Magnéticos , Nanocompostos/química , Hidróxidos/química
18.
Environ Res ; 241: 117262, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839531

RESUMO

Two-dimensional Layered double hydroxides (LDHs) are highly used in the biomedical domain due to their biocompatibility, biodegradability, controlled drug loading and release capabilities, and improved cellular permeability. The interaction of LDHs with biological systems could facilitate targeted drug delivery and make them an attractive option for various biomedical applications. Rheumatoid Arthritis (RA) requires targeted drug delivery for optimum therapeutic outcomes. In this study, stacked double hydroxide nanocomposites with dextran sulphate modification (LDH-DS) were developed while exhibiting both targeting and pH-sensitivity for rheumatological conditions. This research examines the loading, release kinetics, and efficiency of the therapeutics of interest in the LDH-based drug delivery system. The mean size of LDH-DS particles (300.1 ± 8.12 nm) is -12.11 ± 0.4 mV. The encapsulation efficiency was 48.52%, and the loading efficacy was 16.81%. In vitro release tests indicate that the drug's discharge is modified more rapidly in PBS at pH 5.4 compared to pH 5.6, which later reached 7.3, showing the case sensitivity to pH. A generative adversarial network (GAN) is used to analyze the drug delivery system in rheumatology. The GAN model achieved high accuracy and classification rates of 99.3% and 99.0%, respectively, and a validity of 99.5%. The second and third administrations resulted in a significant change with p-values of 0.001 and 0.05, respectively. This investigation unequivocally demonstrated that LDH functions as a biocompatible drug delivery matrix, significantly improving delivery effectiveness.


Assuntos
Nanocompostos , Reumatologia , Hidróxidos/química , Sistemas de Liberação de Medicamentos/métodos , Nanocompostos/química , Nanotecnologia
19.
Chemosphere ; 350: 141011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145848

RESUMO

Environmental pollution, particularly water pollution caused by organic substances like synthetic dyes, is a pressing global concern. This study focuses on enhancing the adsorption capacity of layered double hydroxides (LDHs) to remove methylene blue (MB) dye from water. The synthesized materials are characterized using techniques like FT-IR, XRD, SEM, TEM, TGA, EDS, BET, BJH, AFM, and UV-Vis DRS. Adsorption experiments show that Zn-Al LDH@ext exhibits a significant adsorption capacity for MB dye compared to pristine LDH. In addition, Zn-Al LDH@ext shows a significant increase in stability, which is attributed to the presence of phenolic compounds in the extract and the interactions between the functional groups of the extract and LDH. The pH and adsorbent dosage optimizations show that pH 7 and 0.7 g of Zn-Al LDH@ext are optimal conditions for efficient MB removal. The study assessed adsorption kinetics through the examination of Langmuir, Freundlich, and Temkin isotherms. Additionally, four kinetic models, namely pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich, were analyzed. The results indicated that the Temkin isotherm (R2 = 0.9927), and pseudo-second-order (R2 = 0.9999) kinetic provided the best fit to the experimental data. This study introduces a novel approach to enhance adsorption efficiency using modified LDHs, contributing to environmentally friendly and cost-effective water treatment methods.


Assuntos
Corantes , Poluentes Químicos da Água , Corantes/química , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Hidróxidos/química , Adsorção , Cinética , Zinco/química , Concentração de Íons de Hidrogênio
20.
Dalton Trans ; 52(45): 16661-16669, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37910402

RESUMO

Because of their remarkable qualities including changeable chemical composition, good redox characteristics, and ease of manufacture, non-enzymatic glucose sensors based on metallic hydroxides have attracted much interest. However, enhancement of their peroxidase-like catalytic activity is challenging due to their poor substrate affinity and low electrical conductivity, affecting electron transfer. Herein, a three-dimensional hierarchical architecture of Ni/Co-decorated-Fe layered double hydroxide (NiCoFe-LDH) was straightforwardly constructed on Fe foam (FF) via a feasible corrosion strategy, and the non-enzymatic glucose sensing properties of the NiCoFe-LDH/FF electrode were investigated. In the linear detection range of 0.010-0.1 mM, the electrode exhibits an extreme sensitivity of 5717 µA mM-1 cm-2 with a low threshold for glucose determination of 2.61 µM (S/N = 3) and a short reaction time (∼2 s), which is ascribed to its specific intertwined nanosheet-like morphology with rich electron transfer passages that enhance conductivity and improve the accessibility to more active catalytic sites for glucose oxidation. Moreover, the electrode shows excellent selectivity, good stability, and promising practicality for glucose detection in actual serum samples. These results indicate that the feasible corrosion approach towards the simple synthesis of trimetallic layered double hydroxide electrodes results in improved affinity and stability, holding new prospects for achieving reliable, cost-efficient, and eco-friendly non-enzymatic glucose detection.


Assuntos
Glucose , Hidróxidos , Corrosão , Hidróxidos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...